|
|
傳 真 :021-50520868 |
郵 編 :201201 |
E-mail:shfyglaser@126.com |
|
|
|
|
當前位置:首頁 - 新聞動態(tài)
- 新聞動態(tài) - 行業(yè)動態(tài) |
|
激光焊接技術簡介
|
|
|
發(fā)布時間:2010.06.02 新聞來源:方圓集團上海激光科技有限公司 瀏覽次數: |
|
激光焊接技術www.52xxxx.com簡介 激光焊接是激光加工材料加工技術應用的重要方面之一。70年代主要用于焊接薄壁材料和低速焊接,焊接過程屬于熱傳導型,即激光輻射加熱工件表面,表面熱量通過熱傳導 向內部擴散,通過控制激光脈沖的寬度、能量、峰值功率和重復頻率等參數,使工件熔化,形成特定的熔池。由于激光焊接作為一種高質量、高精度、低變形、高效 率和高速度的焊接方法,隨著高功率CO2和高功率的YAG激光器以及光纖傳輸技術的完善、金屬鉬焊接聚束物鏡等的研制成功,使其在機械制造、航空航天、汽車工業(yè)、粉末冶金、生物醫(yī)學微電子行業(yè)等領域的應用越來越廣。 目前的研究主要集中于C02激光和YAG激光焊接各種金屬材料時的理論,包括激光誘發(fā)的等離子體的分光、吸收、散射特性以及激光焊接智能化控制、 復合焊接、激光焊接現(xiàn)象及小孔行為、焊接缺陷發(fā)生機理與防止方法等,并對鎳基耐熱合金、鋁合金及鎂合金的焊接性,焊接現(xiàn)象建模與數值模擬,鋼鐵材料、銅、鋁合金與異種材料的連接,激光接頭性能評價等方面做了一定的研究[1]。 激光焊接原理: 激光焊接是將高強度的激光束輻射至金屬表面,通過激光與金屬的相互作用,金屬吸收激光轉化為熱能使金屬熔化后冷卻結晶形成焊接。圖1顯示在不同的輻射功率密度下熔化過程的演變階段[2],激光焊接的機理有兩種: 1、熱傳導焊接當激光照射在材料表面時,一部分激光被反射,一部分被材料吸收,將光能轉化為熱能而加熱熔化,材料表面層的熱以熱傳導的方式繼續(xù)向材料深處傳遞,最后將兩焊件熔接在一起。 2、激光深熔焊 當功率密度比較大的激光束照射到材料表面時,材料吸收光能轉化為熱能,材料被加熱熔化至汽化,產生大量的金屬蒸汽,在蒸汽退出表面時產生的反作用力下,使熔化的金屬液體向四周排擠,形成凹坑,隨著激光的繼續(xù)照射,凹坑穿人更深,當激光停止照射后,凹坑周邊的熔液回流,冷卻凝固后將兩焊件焊接在—起。 這兩種焊接機理根據實際的材料性質和焊接需要來選擇,通過調節(jié)激光的各焊接工藝參數得到不同的焊接機理。這兩種方式最基本的區(qū)別在于:前者熔池表面保持封閉,而后者熔池則被激光束穿透成孔。傳導焊對系統(tǒng)的擾動較小,因為激光束的輻射沒有穿透被焊材料,所以,在傳導焊過程中焊縫不易被氣體侵入;而深熔焊時,小孔的不斷關閉能導致氣孔。傳導焊和深熔焊方式也可以在同一焊接過程中相互轉換,由傳導方式向小孔方式的轉變取決于施加于工件的峰值激光能量密度和激光脈沖持續(xù)時間。激光脈沖能量密度的時間依賴性能夠使激光焊接在激光與材料相互作用期間由一種焊接方式向另一種方式轉變,即在相互作用過程中焊縫可以先在傳導方式下形成,然后再轉變?yōu)樾】追绞健?nbsp; 目前激光焊應用領域的擴大,主要應用于: 制造業(yè)應用、粉末冶金領域、汽車工業(yè)、電子工業(yè)、生物醫(yī)學、其他領域如對BT20鈦合金[22]、HEl30合金[23]、Li-ion電池[24]等激光焊接。 激光焊接的特點是被焊接工件變形極小,幾乎沒有連接間隙,焊接深度/寬度比高,因此焊接質量比傳統(tǒng)焊接方法高。但是,如向保證激光焊接的質量,也就是激光焊接過程監(jiān)測與質量控制是一個激光利用領域的重要內容,包括利用電感、電容、聲波、光電等各種傳感器,通過電子計算機處理,針對不同焊接對象和要 求,實現(xiàn)諸如焊縫跟蹤、缺陷檢測、焊縫質量監(jiān)測等項目,通過反饋控制調節(jié)焊接工藝參數,從而實現(xiàn)自動化激光焊接。在激光焊接中,光束焦點位置是最關鍵的控制工藝參數之一,在一定激光功率和焊接速度下,只有焦點處于最佳位置范圍內才能獲得最大熔深和好的焊縫形狀。在實際激光焊接中,為了避免和減少影響焦點位置穩(wěn)定性的因素,需要專門的夾緊和設備技術,這種設備的精確程度與激光焊接的質量高低是相輔相成的。 一、激光焊接的主要特性。與其它傳統(tǒng)焊接技術相比,激光焊接的主要優(yōu)點是: 1、速度快、深度大、變形小。 2、能在室溫或特殊條件下進行焊接,焊接設備裝置簡單。例如,激光通過電磁場,光束不會偏移;激光在真空、空氣及某種氣體環(huán)境中均能施焊,并能通過玻璃或對光束透明的材料進行焊接。 3、可焊接難熔材料如鈦、石英等,并能對異性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接時,深寬比可達5:1,最高可達10:1。 5、可進行微型焊接。激光束經聚焦后可獲得很小的光斑,且能精確定位,可應用于大批量自動化生產的微、小型工件的組焊中。 6、可焊接難以接近的部位,施行非接觸遠距離焊接,具有很大的靈活性。尤其是近幾年來,在YAG激光加工技術中采用了光纖傳輸技術,使激光焊接技術獲得了更為廣泛的推廣和應用。 7、激光束易實現(xiàn)光束按時間與空間分光,能進行多光束同時加工及多工位加工,為更精密的焊接提供了條件。 但是,激光焊接也存在著一定的局限性: 1、要求焊件裝配精度高,且要求光束在工件上的位置不能有顯著偏移。這是因為激光聚焦后光斑尺雨寸小,焊縫窄,為加填充金屬材料。若工件裝配精度或光束定位精度達不到要求,很容易造成焊接缺憾。 2、激光器及其相關系統(tǒng)的成本較高,一次性投資較大。 二、激光焊接熱傳導。 激光焊接是將高強度的激光束輻射至金屬表面,通過激光與金屬的相互作用,使金屬熔化形成焊接。在激光與金屬的相互作用過程中,金屬熔化僅為其中一種物理現(xiàn)象。有時光能并非主要轉化為金屬熔化,而以其它形式表現(xiàn)出來,如汽化、等離子體形成等。然而,要實現(xiàn)良好的熔融焊接,必須使金屬熔化成為能量轉換的主要形式。為此,必須了解激光與金屬相互作用中所產生的各種物理現(xiàn)象以及這些物理現(xiàn)象與激光參數的關系,從而通過控制激光參數,使激光能量絕大部分轉化為金屬熔化的能量,達到焊接的目的。 三、激光焊接的工藝參數。 1、功率密度。 功率密度是激光加工中最關鍵的參數之一。采用較高的功率密度,在微秒時間范圍內,表層即可加熱至沸點,產生大量汽化。因此,高功率密度對于材料去除加工,如打孔、切割、雕刻有利。對于較低功率密度,表層溫度達到沸點需要經歷數毫秒,在表層汽化前,底層達到熔點,易形成良好的熔融焊接。因此,在傳導 型激光焊接中,功率密度在范圍在104~106W/CM2。 2、激光脈沖波形。 激光脈沖波形在激光焊接中是一個重要問題,尤其對于薄片焊接更為重要。當高強度激光束射至材料表面,金屬表面將會有60~98%的激光能量反射而損失掉,且反射率隨表面溫度變化。在一個激光脈沖作用期間內,金屬反射率的變化很大。 3、激光脈沖寬度。 脈寬是脈沖激光焊接的重要參數之一,它既是區(qū)別于材料去除和材料熔化的重要參數,也是決定加工設備造價及體積的關鍵參數。 4、離焦量對焊接質量的影響。 激光焊接通常需要一定的離焦,因為激光焦點處光斑中心的功率密度過高,容易蒸發(fā)成孔。離開激光焦點的各平面上,功率密度分布相對均勻。 離焦方式有兩種:正離焦與負離焦。 焦平面位于工件上方為正離焦,反之為負離焦。按幾何光學理論,當正負離做文章一相等時,所對應平面上功率密度近似相同,但實際上所獲得的熔池形狀不同。負離焦時,可獲得更大的熔深,這與熔池的形成過程有關。實驗表明,激光加熱50~200us材料開始熔化,形成液相金屬并出現(xiàn)問分汽化,形成市壓蒸汽,并以極高的速度噴射,發(fā)出耀眼的白光。與此同時,高濃度汽體使液相金屬運動至熔池邊緣,在熔池中心形成凹陷。當負離焦時,材料內部功率密度比表面還高,易形成更強的熔化、汽化,使光能向材料更深處傳遞。所以在實際應用中,當要求熔深較大時,采用負離焦;焊接薄材料時,宜用正離焦。 雙點激光焊技術 目前在焊接電阻、電池及電子領域常用同時焊接兩個點的工藝,通常采用兩個激光光源設計。 適合激光焊的材質有哪些 1、模具鋼。 S136,SKD-11,NAK80,8407,718,738,H13,P20,W302,2344等焊接效果較好。 2、碳鋼及普通合金鋼的激光焊接。 總的說,碳鋼激光焊接效果良好,其焊接質量取決于雜質含量。就象其它焊接工藝一樣,硫和磷是產生焊接裂紋的敏感因素。為了獲得滿意的焊接質量,碳含量超過0.25%時需要預熱。當不同含碳量的鋼相互焊接時,焊炬可稍偏向低碳材料一邊,以確保接頭質量。低碳沸騰鋼由于硫、磷的含量高,并不適合激光焊接。低碳鎮(zhèn)靜鋼由于低的雜質含量,焊接效果就很好。中、高碳鋼和普通合金鋼都可以進行良好的激光焊接,但需要預熱和焊后處理,以消除應力,避免裂紋形成。 3、不銹鋼的激光焊接。一般的情況下,不銹鋼激光焊接比常規(guī)焊接更易于獲得優(yōu)質接頭。由于高的焊接速度熱影響區(qū)很小,敏化不成為重要問題。與碳鋼相比,不銹鋼低的熱導系數更易于獲得深熔窄焊縫。 4、不同鋼材之間的激光焊接。 激光焊接極高的冷卻速度和很小的熱影響區(qū),為許多不同金屬焊接融化后有不同結構的材料相容創(chuàng)造了有利條件,F(xiàn)已證明以下金屬可以順利進行激光深熔焊接:不銹鋼~低碳鋼,416不銹鋼~310不銹鋼,347不銹鋼~HASTALLY鎳合金,鎳電極~冷鍛鋼,不同鎳含量的雙金屬帶。 5、鈦、鎳、錫、銅、鋁、鉻、鈮、金、銀等多種金屬及其合金,及鋼、可伐合金等合金的同種材料間的焊接。 有色金屬相對難焊,其紫銅合金、銀合金最難焊。 6、應用于銅-鎳、鎳-鈦、銅-鈦、鈦-鉬、黃銅-銅、低碳鋼-銅等多種異種金屬間的焊接。 難易度 不銹鋼 模具鋼 碳鋼 合金鋼 鎳 鋅 鋁 金 銀 銅 不銹鋼 易 模具鋼 易 易 碳鋼 易 易 易 合金鋼 易 易 易 易 鎳 易 易 易 易 易 鋅 易 易 易 易 易 易 鋁 稍難 稍難 稍難 稍難 稍難 稍難 較易 金 難 難 難 難 難 難 難 稍難 銀 難 難 難 難 難 難 難 難 難 銅 難 難 難 難 難 難 難 難 難 難 以上僅供參考,金屬與合金成份不一,對焊接有較大影響,所以以實際測試為準。 鍍層對激光焊的影響: 高平鏡面鍍層很難焊接: 鏡面鍍鉻、鍍銀等 一般鍍層較易焊接:鍍鎳、鍍鋅、鍍銅 對焊接強度無影響 高度拋光金屬較難焊:銅、銀、金 焊接強度較小 其他處理易焊接:只要不是鏡面焊接強度較大 間隙對激光焊的影響: 縫越小,外觀越好,強度越大,縫大時,出現(xiàn)較嚴重的槽狀焊縫,強度也小。 材料厚度對激光焊的影響: 0.2以下的材質,焊接難度大,焊接縫會有變形等現(xiàn)象,焊接牢固度變小。 較厚材質,焊接外觀較好,強度也大。 |
|
|
|